Exploratory
  • Introduction
  • Product Features
    • Summary View
    • Table View
    • Row Filter
    • Column Filter
    • Dashboard
    • Dashboard (日本語)
    • Note
    • Note (日本語)
    • Steps (Right-hand side)
    • Branch
    • Parameter
    • Parameter (日本語)
    • Export
    • Share
      • Share Type
      • Chart / Analytics
      • Data
      • Report (Note / Dashboard)
      • Notification
      • Version History
      • Restore Older Version
      • CSV API
    • Share (日本語)
      • 共有のタイプ
      • チャート / アナリティクス
      • データ
      • レポート (ノート / ダッシュボード)
      • 通知
      • バージョンの履歴
      • 古いバージョンの復元
      • CSV API
    • Schedule
      • Manage Schedules
      • Notification
      • Scheduling History
    • Schedule (日本語)
      • スケジュールの設定
      • 通知
      • スケジュールの履歴
    • Team
      • Manage Teams
    • Team (日本語)
      • チームの設定
    • Project
      • Import
      • Export
      • Search
  • Data Import
    • File Data
      • CSV / Delimited File
      • Amazon S3
      • Google Drive
      • Google Cloud Storage
      • Excel
      • JSON
      • Log File
      • Microsoft Azure
      • Stats - SAS / SPSS / STATA
      • RData / RDS
      • Parquet File
      • EDF - Exploratory
    • Database Data
      • SQL Troubleshooting
      • Create Connection
      • Amazon Athena
      • Amazon Aurora
      • Amazon Redshift
      • Amazon Redshift (日本語)
      • Google BigQuery
      • HP Vertica
      • MariaDB / MySQL DB
      • MariaDB / MySQL DB (日本語)
      • Microsoft Access
      • MongoDB
      • ODBC
      • Oracle
      • PostgreSQL
      • PostgreSQL (日本語)
      • Presto
      • Snowflake
      • SQLServer (DSN)
      • SQLServer
      • Teradata
      • Treasure Data
    • Cloud Apps Data
      • Create Connection
      • FRED - Federal Reserve of Economic Data
      • Github Issues
      • Google Analytics
      • Google Analytics (日本語)
      • Google Spreadsheet
      • Google Cloud Storage
      • Salesforce
      • Twitter Search
      • Stripe
      • Weather Data
      • Stock Price Data
    • Write R Script as Data
      • Currency Exchange Rate
    • Write R Script as Data (日本語)
    • Web Page Scraping
    • Text Input Data
    • Data Source Extension
      • Quandl
      • Holiday
      • RSS Data
    • Create Custom Data Source
  • Data Wrangling
    • Command Line mode for faster and more flexible data interaction in Exploratory
    • Select / Remove Columns
    • Reorder Columns
    • Create New Calculation
    • Create New Calculation for Multiple Columns
    • Summarize (Aggregate)
    • Group
    • Filter
    • Rename
    • Arrange (Sort)
    • Top / Bottom N
    • Join
    • Merge
    • Gather
    • Spread
    • Pivot
    • Expand
    • Complete
    • Separate
    • Unite
    • Bind Rows
    • Bind Columns
    • Keep Only Unique Rows
    • Keep Only Duplicated Rows
    • Slice
    • Drop NA
    • Sample
    • Impute NA
    • Fill
    • Create Buckets
    • Assign New Values to Existing Values - Recode
    • Assign New Values by Setting Conditions - Case When
    • Work with Categories
    • Data Type Conversion
    • Row as header
    • Ungroup
    • Unnest
    • Separate List Items into Columns (Unnest Wider)
    • Separate List Items into Rows (Unnest Longer)
    • Separate Address (Japan)
    • Hoist
    • Remove Empty Rows
    • Remove Empty Columns
    • Clean Column Names
    • Window Calculation
    • Window Calculation (日本語)
    • Add Row
    • Text Wrangling
    • Regular Expression Cheat Sheet
    • Regular Expression Cheat Sheet (日本語)
  • Visualization
    • Types
      • Pivot
      • Summarize Table
      • Table
      • Bar
      • Line
      • Area
      • Pie/Ring
      • Radar
      • Histogram
      • Density Plot
      • Scatter (No Aggregation)
      • Scatter (With Aggregation)
      • Boxplot
      • Violin
      • Error Bar
      • Error Bar (Summarized Data)
      • Map - Standard
      • Map - Extension
      • Map - Long/Lat
      • Map - Heatmap
      • Heatmap
      • Contour
      • Number
      • Word Cloud
      • Word Cloud (日本語)
    • Features
      • Trend Line
      • Reference Line
      • Repeat By
      • Window Calculation
      • Date/Time Aggregation
      • Show Range
      • Highlight
      • Change Marker
      • Multiple Y-Axis Columns
      • Layout Configuration
      • Column Configuration
      • Column Configuration Dialog
      • Color and Group Setting
      • Color and Group Setting (日本語)
      • Color Setting
      • User Color Palette Setting
      • Pin
      • Save as PNG/SVG
      • Save as Exploratory Data File
      • Share/Schedule
      • URL Link
      • Category (Binning)
      • Highlight
      • Limit Values
      • 'Others' Group
      • Edit Display Name
      • Missing Value Handling
      • Rename Column Names
      • Axis Setting
      • Axis Formatting
      • Show Detail
      • Fit to Screen (Table)
      • Number of Unique Values Check
      • Number of Unique Values Check (日本語)
  • Analytics
    • Correlation
    • Distance
    • K-Means Clustering
    • Principal Component Analysis
    • Factor Analysis
    • Correspondence Analysis
    • Linear Regression Analysis
    • Logistic Regression Analysis
    • Generalized Linear Models
    • Survival Curve
    • Cox Regression
    • Random Survival Forest
    • Decision Tree
    • Random Forest
    • XGBoost
    • Time Series Forecasting (Prophet)
    • Time Series Forecasting (ARIMA)
    • Time Series Clustering
    • Anomaly Detection
    • Word Count
    • Text Clustering with Topic Model (LDA)
    • Market Basket Analysis
    • T Test
    • T Test (Aggregated Data)
    • ANOVA
    • Wilcoxon Test
    • Kruskal-Wallis Test
    • Chi-Square Test
    • A/B Test
    • Normality Test
    • Prediction
    • Dictionaries for Text Analysis
  • Statistics
    • Correlation
    • Distance
    • Cosine Similarity
    • SVD
    • Multi Dimensional Scaling
    • T-test
    • F-test
    • Chi-square test
    • A/B Test (Bayesian)
  • Machine Learning
    • Linear Regression
    • Logistic Regression
    • GLM
    • Multinomial Logistic Regression
    • K-means Clustering
    • Random Forest
    • XGBoost
    • Forecasting
    • Time Series Clustering
    • Anomaly Detection
    • Survival Curve
    • Survival Model (Cox Regression)
    • Market Basket
    • Causal Impact
    • Evaluate Prediction - Regression
    • Evaluate Prediction - Binary
    • Calculate ROC
    • Evaluate Prediction - Multiclass
    • Prediction
    • Prediction - Binary Classification
    • Prediction - Survival Model
    • Simulate Survival Curve
    • Extract Summary of Fit
    • Extract Parameter Estimates
    • Run ANOVA Test
    • Fix Imbalanced Data (SMOTE)
  • Text Analysis
    • Tokenize Text
    • Create N-gram Tokens
    • Calculate tf-idf
    • Count Text Pairs
  • Extend with R
    • R Package Install
    • Custom R Script
    • Custom Model Function
  • Setup
    • Disable McAfee virus scan
    • Change Repository Location
    • Change Repository Location (日本語)
    • Holidays Data for Forecast
    • Possible Reasons for Install Error
    • Upgrade Microsoft .NET Framework
  • Diagnostics
    • Log file for debugging
    • Log file for debugging (日本語)
    • Startup Log file for debugging
    • Startup Log file for debugging (日本語)
    • Check version of Exploratory Desktop
    • How to Recover the History Data
  • Keyboard shortcuts
Powered by GitBook
On this page
  • Introduction
  • How to Access?
  • How to Use?
  • Column Selection
  • Train Test Split
  • Regression
  • Binary Classification
  • Multiclass Classification
  • How to Read Summary
  • Step-by-step

Was this helpful?

  1. Machine Learning

XGBoost

PreviousRandom ForestNextForecasting

Last updated 3 years ago

Was this helpful?

Introduction

Create extreme gradient boosting model regression, binary classification and multiclass classification.

How to Access?

There are two ways to access. One is to access from 'Add' (Plus) button.

Another way is to access from a column header menu.

How to Use?

Column Selection

There are two ways to set what you want to predict by what variables.

If you are on "Select Columns" tab, you can set them by column selector.

If you are on "Custom" tab, you can type a formula directly.

Train Test Split

You can split the data into training and test to evaluate the performance of the model. You can set

  • Test Data Set Ratio - Ratio of test data in the whole data.

  • Random Seed to Split Training/Test - You can change random seed to try other training and test data combination.

Regression

Parameters

  • Use Validation Data (Optional) - You can set data randomly selected to use as validation data set to watch the performance of the model against data that is not used for learning process. It prevents overfitting.

  • How to treat NA? (Optional) - "na.action" parameter of glm. function. The default is "na.pass". This changes the behaviour of NA data. Can be one of the following.

    • "na.pass"

    • "na.omit"

    • "na.fail"

  • Use Sparse Matrix (Optional) - If TRUE, it uses sparse matrix internally. This is memory efficient when the data becomes sparse, which means it has a lot of zero values. You can set this implicitly but as default, sparse matrix is used when categorical values are used because the model matrix is often sparse in such case.

  • Type of Output (Optional) - The default is "linear". What distribution the target variable follows. This can be

    • "linear"

    • "logistic"

    • "gamma"

    • "tweedie"

  • Max Number of Iterations (Optional) - The default is 10. Max number of iterations for training.

  • Booster Type (Optional) - The default is "gbtree". Distribution that the target variable follows. This can be

    • "gbtree"

    • "gblinear"

    • "dart"

  • Weight Column (Optional) - The default is NULL. A column with weight for each data.

  • Number of Early Stopping Rounds (Optional) - The default is NULL. The number of iterations to stop after the performance doesn't improve.

  • Max Depth (Optional)

  • Minimum Child Weight (Optional)

  • Gamma (Optional)

  • Subsample (Optional)

  • Column Sample by Tree (Optional)

  • Learning Rate (Optional)

  • Evaluation Metrics (Optional)

How to Read Summary

Summary of Fit

  • Number of Iteration - Number of training iteration

  • Root Mean Square Error - Root mean square error to training data.

  • Mean Absolute Error - Mean absolute to training data.

Feature Importance

  • Feature - Name of the feature.

  • Importance - Improvement in accuracy for predicting the outcome by the feature.

  • Coverage - The ratio of the data covered by the feature.

  • Frequency - How many times each feature is used in all generated trees for training the model in a relative quantity scale.

Binary Classification

Parameters

  • Use Validation Data (Optional) - You can set data randomly selected to use as validation data set to watch the performance of the model against data that is not used for learning process. It prevents overfitting.

  • How to treat NA? (Optional) - "na.action" parameter of glm. function. The default is "na.pass". This changes the behaviour of NA data. Can be one of the following.

    • "na.pass"

    • "na.omit"

    • "na.fail"

  • Use Sparse Matrix (Optional) - If TRUE, it uses sparse matrix internally. This is memory efficient when the data becomes sparse, which means it has a lot of zero values. You can set this implicitly but as default, sparse matrix is used when categorical values are used because the model matrix is often sparse in such case.

  • Type of Output (Optional) - The default is "softprob". What distribution the target variable follows. This can be

    • "softprob"

    • "softmax"

  • Max Number of Iterations (Optional) - The default is 10. Max number of iterations for training.

  • Booster Type (Optional) - The default is "gbtree". Distribution that the target variable follows. This can be

    • "gbtree"

    • "gblinear"

    • "dart"

  • Weight Column (Optional) - The default is NULL. A column with weight for each data.

  • Number of Early Stopping Rounds (Optional) - The default is NULL. The number of iterations to stop after the performance doesn't improve.

  • Max Depth (Optional)

  • Minimum Child Weight (Optional)

  • Gamma (Optional)

  • Subsample (Optional)

  • Column Sample by Tree (Optional)

  • Learning Rate (Optional)

  • Evaluation Metrics (Optional)

How to Read Summary

Summary of Fit

  • Number of Iteration - Number of training iteration

  • AUC - Area under curve score to training data.

  • Misclassification Rate - Ratio of wrong classification to training data.

  • Negative Log Likelihood - Negative log likelihood score to training data.

Feature Importance

  • Feature - Name of the feature.

  • Importance - Improvement in accuracy for predicting the outcome by the feature.

  • Coverage - The ratio of the data covered by the feature.

  • Frequency - How many times each feature is used in all generated trees for training the model in a relative quantity scale.

Multiclass Classification

Parameters

  • Use Validation Data (Optional) - You can set data randomly selected to use as validation data set to watch the performance of the model against data that is not used for learning process. It prevents overfitting.

  • How to treat NA? (Optional) - "na.action" parameter of glm. function. The default is "na.pass". This changes the behaviour of NA data. Can be one of the following.

    • "na.pass"

    • "na.omit"

    • "na.fail"

  • Use Sparse Matrix (Optional) - If TRUE, it uses sparse matrix internally. This is memory efficient when the data becomes sparse, which means it has a lot of zero values. You can set this implicitly but as default, sparse matrix is used when categorical values are used because the model matrix is often sparse in such case.

  • Type of Output (Optional) - The default is "linear". What distribution the target variable follows. This can be

    • "linear"

    • "logistic"

    • "gamma"

    • "tweedie"

  • Max Number of Iterations (Optional) - The default is 10. Max number of iterations for training.

  • Booster Type (Optional) - The default is "gbtree". Distribution that the target variable follows. This can be

    • "gbtree"

    • "gblinear"

    • "dart"

  • Weight Column (Optional) - The default is NULL. A column with weight for each data.

  • Number of Early Stopping Rounds (Optional) - The default is NULL. The number of iterations to stop after the performance doesn't improve.

  • Max Depth (Optional)

  • Minimum Child Weight (Optional)

  • Gamma (Optional)

  • Subsample (Optional)

  • Column Sample by Tree (Optional)

  • Learning Rate (Optional)

  • Evaluation Metrics (Optional)

How to Read Summary

Summary of Fit

  • Number of Iteration - Number of training iteration.

  • Misclassification Rate - Ratio of wrong classification to training data.

  • Multiclass Logloss - Negative log likelihood score to training data.

Feature Importance

  • Feature - Name of the feature.

  • Importance - Improvement in accuracy for predicting the outcome by the feature.

  • Coverage - The ratio of the data covered by the feature.

  • Frequency - How many times each feature is used in all generated trees for training the model in a relative quantity scale.

Step-by-step

Here's a step-by-step tutorial guide on how you can build, predict and evaluate logistic regression model.

Introduction to Extreme Gradient Boosting in Exploratory