Exploratory
  • Introduction
  • Product Features
    • Summary View
    • Table View
    • Row Filter
    • Column Filter
    • Dashboard
    • Dashboard (日本語)
    • Note
    • Note (日本語)
    • Steps (Right-hand side)
    • Branch
    • Parameter
    • Parameter (日本語)
    • Export
    • Share
      • Share Type
      • Chart / Analytics
      • Data
      • Report (Note / Dashboard)
      • Notification
      • Version History
      • Restore Older Version
      • CSV API
    • Share (日本語)
      • 共有のタイプ
      • チャート / アナリティクス
      • データ
      • レポート (ノート / ダッシュボード)
      • 通知
      • バージョンの履歴
      • 古いバージョンの復元
      • CSV API
    • Schedule
      • Manage Schedules
      • Notification
      • Scheduling History
    • Schedule (日本語)
      • スケジュールの設定
      • 通知
      • スケジュールの履歴
    • Team
      • Manage Teams
    • Team (日本語)
      • チームの設定
    • Project
      • Import
      • Export
      • Search
  • Data Import
    • File Data
      • CSV / Delimited File
      • Amazon S3
      • Google Drive
      • Google Cloud Storage
      • Excel
      • JSON
      • Log File
      • Microsoft Azure
      • Stats - SAS / SPSS / STATA
      • RData / RDS
      • Parquet File
      • EDF - Exploratory
    • Database Data
      • SQL Troubleshooting
      • Create Connection
      • Amazon Athena
      • Amazon Aurora
      • Amazon Redshift
      • Amazon Redshift (日本語)
      • Google BigQuery
      • HP Vertica
      • MariaDB / MySQL DB
      • MariaDB / MySQL DB (日本語)
      • Microsoft Access
      • MongoDB
      • ODBC
      • Oracle
      • PostgreSQL
      • PostgreSQL (日本語)
      • Presto
      • Snowflake
      • SQLServer (DSN)
      • SQLServer
      • Teradata
      • Treasure Data
    • Cloud Apps Data
      • Create Connection
      • FRED - Federal Reserve of Economic Data
      • Github Issues
      • Google Analytics
      • Google Analytics (日本語)
      • Google Spreadsheet
      • Google Cloud Storage
      • Salesforce
      • Twitter Search
      • Stripe
      • Weather Data
      • Stock Price Data
    • Write R Script as Data
      • Currency Exchange Rate
    • Write R Script as Data (日本語)
    • Web Page Scraping
    • Text Input Data
    • Data Source Extension
      • Quandl
      • Holiday
      • RSS Data
    • Create Custom Data Source
  • Data Wrangling
    • Command Line mode for faster and more flexible data interaction in Exploratory
    • Select / Remove Columns
    • Reorder Columns
    • Create New Calculation
    • Create New Calculation for Multiple Columns
    • Summarize (Aggregate)
    • Group
    • Filter
    • Rename
    • Arrange (Sort)
    • Top / Bottom N
    • Join
    • Merge
    • Gather
    • Spread
    • Pivot
    • Expand
    • Complete
    • Separate
    • Unite
    • Bind Rows
    • Bind Columns
    • Keep Only Unique Rows
    • Keep Only Duplicated Rows
    • Slice
    • Drop NA
    • Sample
    • Impute NA
    • Fill
    • Create Buckets
    • Assign New Values to Existing Values - Recode
    • Assign New Values by Setting Conditions - Case When
    • Work with Categories
    • Data Type Conversion
    • Row as header
    • Ungroup
    • Unnest
    • Separate List Items into Columns (Unnest Wider)
    • Separate List Items into Rows (Unnest Longer)
    • Separate Address (Japan)
    • Hoist
    • Remove Empty Rows
    • Remove Empty Columns
    • Clean Column Names
    • Window Calculation
    • Window Calculation (日本語)
    • Add Row
    • Text Wrangling
    • Regular Expression Cheat Sheet
    • Regular Expression Cheat Sheet (日本語)
  • Visualization
    • Types
      • Pivot
      • Summarize Table
      • Table
      • Bar
      • Line
      • Area
      • Pie/Ring
      • Radar
      • Histogram
      • Density Plot
      • Scatter (No Aggregation)
      • Scatter (With Aggregation)
      • Boxplot
      • Violin
      • Error Bar
      • Error Bar (Summarized Data)
      • Map - Standard
      • Map - Extension
      • Map - Long/Lat
      • Map - Heatmap
      • Heatmap
      • Contour
      • Number
      • Word Cloud
      • Word Cloud (日本語)
    • Features
      • Trend Line
      • Reference Line
      • Repeat By
      • Window Calculation
      • Date/Time Aggregation
      • Show Range
      • Highlight
      • Change Marker
      • Multiple Y-Axis Columns
      • Layout Configuration
      • Column Configuration
      • Column Configuration Dialog
      • Color and Group Setting
      • Color and Group Setting (日本語)
      • Color Setting
      • User Color Palette Setting
      • Pin
      • Save as PNG/SVG
      • Save as Exploratory Data File
      • Share/Schedule
      • URL Link
      • Category (Binning)
      • Highlight
      • Limit Values
      • 'Others' Group
      • Edit Display Name
      • Missing Value Handling
      • Rename Column Names
      • Axis Setting
      • Axis Formatting
      • Show Detail
      • Fit to Screen (Table)
      • Number of Unique Values Check
      • Number of Unique Values Check (日本語)
  • Analytics
    • Correlation
    • Distance
    • K-Means Clustering
    • Principal Component Analysis
    • Factor Analysis
    • Correspondence Analysis
    • Linear Regression Analysis
    • Logistic Regression Analysis
    • Generalized Linear Models
    • Survival Curve
    • Cox Regression
    • Random Survival Forest
    • Decision Tree
    • Random Forest
    • XGBoost
    • Time Series Forecasting (Prophet)
    • Time Series Forecasting (ARIMA)
    • Time Series Clustering
    • Anomaly Detection
    • Word Count
    • Text Clustering with Topic Model (LDA)
    • Market Basket Analysis
    • T Test
    • T Test (Aggregated Data)
    • ANOVA
    • Wilcoxon Test
    • Kruskal-Wallis Test
    • Chi-Square Test
    • A/B Test
    • Normality Test
    • Prediction
    • Dictionaries for Text Analysis
  • Statistics
    • Correlation
    • Distance
    • Cosine Similarity
    • SVD
    • Multi Dimensional Scaling
    • T-test
    • F-test
    • Chi-square test
    • A/B Test (Bayesian)
  • Machine Learning
    • Linear Regression
    • Logistic Regression
    • GLM
    • Multinomial Logistic Regression
    • K-means Clustering
    • Random Forest
    • XGBoost
    • Forecasting
    • Time Series Clustering
    • Anomaly Detection
    • Survival Curve
    • Survival Model (Cox Regression)
    • Market Basket
    • Causal Impact
    • Evaluate Prediction - Regression
    • Evaluate Prediction - Binary
    • Calculate ROC
    • Evaluate Prediction - Multiclass
    • Prediction
    • Prediction - Binary Classification
    • Prediction - Survival Model
    • Simulate Survival Curve
    • Extract Summary of Fit
    • Extract Parameter Estimates
    • Run ANOVA Test
    • Fix Imbalanced Data (SMOTE)
  • Text Analysis
    • Tokenize Text
    • Create N-gram Tokens
    • Calculate tf-idf
    • Count Text Pairs
  • Extend with R
    • R Package Install
    • Custom R Script
    • Custom Model Function
  • Setup
    • Disable McAfee virus scan
    • Change Repository Location
    • Change Repository Location (日本語)
    • Holidays Data for Forecast
    • Possible Reasons for Install Error
    • Upgrade Microsoft .NET Framework
  • Diagnostics
    • Log file for debugging
    • Log file for debugging (日本語)
    • Startup Log file for debugging
    • Startup Log file for debugging (日本語)
    • Check version of Exploratory Desktop
    • How to Recover the History Data
  • Keyboard shortcuts
Powered by GitBook
On this page
  • Time Series Forecasting (ARIMA)
  • Input Data
  • Properties
  • How to Use This Feature
  • "Summary" View in Test Mode
  • "Forecasted" View
  • "Seasonality" View
  • "Trend" View
  • "Stationarity" View
  • "ACF" View
  • "Partial ACF" View
  • "Residuals" View
  • "Residual ACF" View
  • "Residual PACF" View
  • "Data" View
  • Evaluation of Forecasting Models
  • "Forecasted" View in Test Mode
  • R Package
  • Exploratory R Package

Was this helpful?

  1. Analytics

Time Series Forecasting (ARIMA)

Time Series Forecasting (ARIMA)

Builds ARIMA time series forecasting model and makes forecast.

Input Data

Input data should be a time series data. Each row should represent one observation with date/time. It should have the following columns.

  • Date/Time Column - A Date or POSIXct column to indicate when the observations were made.

  • Value Column - A Numeric column that stores observed values.

Properties

  • Forecasting

    • Forecasting Time Period - Length of periods (e.g. days, months, years...) to forecast.

    • Prediction Interval - Controls the width of the displayed prediction interval. The default is 0.8. Probability which is covered by the prediction interval.

  • Model Parameters - Basic

    • Select Parameters Automatically

      • TRUE - Parameters p,d, and q are selected automatically based on the specified criterion.

      • FALSE - Parameters p,d, and q are to be specified manually.

    • Criterion for Parameter Selection - Criterion used to select model when "Select Parameters Automatically" property is TRUE.

      • AIC

      • AICC

      • BIC

    • AR Process (p)

    • Integration (d)

    • MA Process (q)

  • Model Parameters - Seasonal

    • Model with Seasonality - Whether to use Seasonal ARIMA model, as opposed to ARIMA model without seasonality.

    • Seasonal Period

    • Select Parameters Automatically

      • TRUE - Parameters P,D, and Q are selected automatically based on the specified criterion.

      • FALSE - Parameters P,D, and Q are to be specified manually.

    • AR Process (P)

    • Integration (D)

    • MA Process (Q)

  • Stationarity

    • Unit Root Test - The unit root test performed for the "Stationarity" View.

      • KPSS

      • ADF

      • PP

  • Data Preprocessing

    • Missing Value Handling for Value - How to fill missing values after aggregation of data. There are following options. The default is "Fill with Previous Value".

      • Fill with Previous Value

      • Fill with Zero

      • Linear Interpolation

      • Spline Interpolation

  • Evaluation

    • Test Mode - When this option is set to TRUE, the last part of the input data for the period specified by "Forecasting Time Period" is not used for training data, and kept to test predictive performance of the model.

    • Time Period for Test Data - Length of periods (e.g. days, months, years...) at the end of the data to be kept as test data.

How to Use This Feature

  1. Under Analytics view, select "Time Series Forecasting (ARIMA)" for Analytics Type.

  2. Select a column for Date and select an appropriate scale (e.g. Floor to Week).

  3. (Optional) Select a column and aggregate function for Y Axis. The default is Number of Rows.

  4. (Optional) Select a column to group subjects with "Repeat By" column selector. For each group, a separate small chart will be displayed.

  5. Click Run button to run the analytics.

  6. Select each view type (explained below) see the detail of the analysis.

"Summary" View in Test Mode

There are several metrics to help you evaluate the forecasting model's performance. They are presented under "Summary" tab.

  • RMSE (Root Mean Square Error) : Root of mean of squares of difference between actual value and forecasted value.

  • MAE (Mean Absolute Error) : Mean of absolute differences between actual value and forecasted value.

  • MAPE (Mean Absolute Percentage Error) : Mean of absolute differences in percentage of actual value.

  • MASE (Mean Absolute Scaled Error)

"Forecasted" View

"Forecasted" View displays how the future values look like. with a line chart. Blue line is for actual values and orange line is for forecasted values. Orange band shows uncertainty interval.

"Seasonality" View

"Seasonality" View displays seasonality component of the data extracted by STL (Seasonal and Trend decomposition using Loess).

"Trend" View

"Trend" View displays trend component of the data extracted by STL (Seasonal and Trend decomposition using Loess).

"Stationarity" View

"Stationarity" View displays line chart that shows the data after differencing d times. One of the assumption for ARIMA model is that this data is stationary. Statistical test result for the stationarity of this data is displayed in the hover popup on the line.

"ACF" View

"ACF" View shows autocorrelation of the data after differencing d times.

"Partial ACF" View

"Partial ACF" View shows partial autocorrelation of the data after differencing d times.

"Residuals" View

"Residuals" View shows the residual of the forecast by the model.

"Residual ACF" View

"Residual ACF" View shows autocorrelation of the residual data of the forecast by the model.

"Residual PACF" View

"Residual PACF" View shows partial autocorrelation of the residual data of the forecast by the model.

"Data" View

"Data" View shows a table with both past data and forecasted data.

Evaluation of Forecasting Models

You can enable 'Test Mode' to evaluate the forecasting model. This will split the data into Training and Test periods, build a model based on the training data and evaluate the forecasted values against the test data.

You can enable it from the property.

"Forecasted" View in Test Mode

The dark blue line is the actual data in the training period, and the light blue line is the actual data in the test period. You can compare the orange line with the light blue line to see how close the forecasted values are against the actual values.

R Package

Exploratory R Package

PreviousTime Series Forecasting (Prophet)NextTime Series Clustering

Last updated 4 years ago

Was this helpful?

Take a look at for more details on how the evaluation method works.

Time Series Forecasting view uses the R Package under the hood.

For details about fable usage in Exploratory R Package, please refer to the

this note
fable
github repository