Exploratory
  • Introduction
  • Product Features
    • Summary View
    • Table View
    • Row Filter
    • Column Filter
    • Dashboard
    • Dashboard (日本語)
    • Note
    • Note (日本語)
    • Steps (Right-hand side)
    • Branch
    • Parameter
    • Parameter (日本語)
    • Export
    • Share
      • Share Type
      • Chart / Analytics
      • Data
      • Report (Note / Dashboard)
      • Notification
      • Version History
      • Restore Older Version
      • CSV API
    • Share (日本語)
      • 共有のタイプ
      • チャート / アナリティクス
      • データ
      • レポート (ノート / ダッシュボード)
      • 通知
      • バージョンの履歴
      • 古いバージョンの復元
      • CSV API
    • Schedule
      • Manage Schedules
      • Notification
      • Scheduling History
    • Schedule (日本語)
      • スケジュールの設定
      • 通知
      • スケジュールの履歴
    • Team
      • Manage Teams
    • Team (日本語)
      • チームの設定
    • Project
      • Import
      • Export
      • Search
  • Data Import
    • File Data
      • CSV / Delimited File
      • Amazon S3
      • Google Drive
      • Google Cloud Storage
      • Excel
      • JSON
      • Log File
      • Microsoft Azure
      • Stats - SAS / SPSS / STATA
      • RData / RDS
      • Parquet File
      • EDF - Exploratory
    • Database Data
      • SQL Troubleshooting
      • Create Connection
      • Amazon Athena
      • Amazon Aurora
      • Amazon Redshift
      • Amazon Redshift (日本語)
      • Google BigQuery
      • HP Vertica
      • MariaDB / MySQL DB
      • MariaDB / MySQL DB (日本語)
      • Microsoft Access
      • MongoDB
      • ODBC
      • Oracle
      • PostgreSQL
      • PostgreSQL (日本語)
      • Presto
      • Snowflake
      • SQLServer (DSN)
      • SQLServer
      • Teradata
      • Treasure Data
    • Cloud Apps Data
      • Create Connection
      • FRED - Federal Reserve of Economic Data
      • Github Issues
      • Google Analytics
      • Google Analytics (日本語)
      • Google Spreadsheet
      • Google Cloud Storage
      • Salesforce
      • Twitter Search
      • Stripe
      • Weather Data
      • Stock Price Data
    • Write R Script as Data
      • Currency Exchange Rate
    • Write R Script as Data (日本語)
    • Web Page Scraping
    • Text Input Data
    • Data Source Extension
      • Quandl
      • Holiday
      • RSS Data
    • Create Custom Data Source
  • Data Wrangling
    • Command Line mode for faster and more flexible data interaction in Exploratory
    • Select / Remove Columns
    • Reorder Columns
    • Create New Calculation
    • Create New Calculation for Multiple Columns
    • Summarize (Aggregate)
    • Group
    • Filter
    • Rename
    • Arrange (Sort)
    • Top / Bottom N
    • Join
    • Merge
    • Gather
    • Spread
    • Pivot
    • Expand
    • Complete
    • Separate
    • Unite
    • Bind Rows
    • Bind Columns
    • Keep Only Unique Rows
    • Keep Only Duplicated Rows
    • Slice
    • Drop NA
    • Sample
    • Impute NA
    • Fill
    • Create Buckets
    • Assign New Values to Existing Values - Recode
    • Assign New Values by Setting Conditions - Case When
    • Work with Categories
    • Data Type Conversion
    • Row as header
    • Ungroup
    • Unnest
    • Separate List Items into Columns (Unnest Wider)
    • Separate List Items into Rows (Unnest Longer)
    • Separate Address (Japan)
    • Hoist
    • Remove Empty Rows
    • Remove Empty Columns
    • Clean Column Names
    • Window Calculation
    • Window Calculation (日本語)
    • Add Row
    • Text Wrangling
    • Regular Expression Cheat Sheet
    • Regular Expression Cheat Sheet (日本語)
  • Visualization
    • Types
      • Pivot
      • Summarize Table
      • Table
      • Bar
      • Line
      • Area
      • Pie/Ring
      • Radar
      • Histogram
      • Density Plot
      • Scatter (No Aggregation)
      • Scatter (With Aggregation)
      • Boxplot
      • Violin
      • Error Bar
      • Error Bar (Summarized Data)
      • Map - Standard
      • Map - Extension
      • Map - Long/Lat
      • Map - Heatmap
      • Heatmap
      • Contour
      • Number
      • Word Cloud
      • Word Cloud (日本語)
    • Features
      • Trend Line
      • Reference Line
      • Repeat By
      • Window Calculation
      • Date/Time Aggregation
      • Show Range
      • Highlight
      • Change Marker
      • Multiple Y-Axis Columns
      • Layout Configuration
      • Column Configuration
      • Column Configuration Dialog
      • Color and Group Setting
      • Color and Group Setting (日本語)
      • Color Setting
      • User Color Palette Setting
      • Pin
      • Save as PNG/SVG
      • Save as Exploratory Data File
      • Share/Schedule
      • URL Link
      • Category (Binning)
      • Highlight
      • Limit Values
      • 'Others' Group
      • Edit Display Name
      • Missing Value Handling
      • Rename Column Names
      • Axis Setting
      • Axis Formatting
      • Show Detail
      • Fit to Screen (Table)
      • Number of Unique Values Check
      • Number of Unique Values Check (日本語)
  • Analytics
    • Correlation
    • Distance
    • K-Means Clustering
    • Principal Component Analysis
    • Factor Analysis
    • Correspondence Analysis
    • Linear Regression Analysis
    • Logistic Regression Analysis
    • Generalized Linear Models
    • Survival Curve
    • Cox Regression
    • Random Survival Forest
    • Decision Tree
    • Random Forest
    • XGBoost
    • Time Series Forecasting (Prophet)
    • Time Series Forecasting (ARIMA)
    • Time Series Clustering
    • Anomaly Detection
    • Word Count
    • Text Clustering with Topic Model (LDA)
    • Market Basket Analysis
    • T Test
    • T Test (Aggregated Data)
    • ANOVA
    • Wilcoxon Test
    • Kruskal-Wallis Test
    • Chi-Square Test
    • A/B Test
    • Normality Test
    • Prediction
    • Dictionaries for Text Analysis
  • Statistics
    • Correlation
    • Distance
    • Cosine Similarity
    • SVD
    • Multi Dimensional Scaling
    • T-test
    • F-test
    • Chi-square test
    • A/B Test (Bayesian)
  • Machine Learning
    • Linear Regression
    • Logistic Regression
    • GLM
    • Multinomial Logistic Regression
    • K-means Clustering
    • Random Forest
    • XGBoost
    • Forecasting
    • Time Series Clustering
    • Anomaly Detection
    • Survival Curve
    • Survival Model (Cox Regression)
    • Market Basket
    • Causal Impact
    • Evaluate Prediction - Regression
    • Evaluate Prediction - Binary
    • Calculate ROC
    • Evaluate Prediction - Multiclass
    • Prediction
    • Prediction - Binary Classification
    • Prediction - Survival Model
    • Simulate Survival Curve
    • Extract Summary of Fit
    • Extract Parameter Estimates
    • Run ANOVA Test
    • Fix Imbalanced Data (SMOTE)
  • Text Analysis
    • Tokenize Text
    • Create N-gram Tokens
    • Calculate tf-idf
    • Count Text Pairs
  • Extend with R
    • R Package Install
    • Custom R Script
    • Custom Model Function
  • Setup
    • Disable McAfee virus scan
    • Change Repository Location
    • Change Repository Location (日本語)
    • Holidays Data for Forecast
    • Possible Reasons for Install Error
    • Upgrade Microsoft .NET Framework
  • Diagnostics
    • Log file for debugging
    • Log file for debugging (日本語)
    • Startup Log file for debugging
    • Startup Log file for debugging (日本語)
    • Check version of Exploratory Desktop
    • How to Recover the History Data
  • Keyboard shortcuts
Powered by GitBook
On this page
  • Input Data
  • Properties
  • How to Use This Feature
  • "Summary" View
  • "Prediction" View
  • "Importance" View
  • "Prediction Matrix" View
  • "Probability" View
  • "Prediction Quality" View
  • "ROC" View
  • "Data" View
  • Exploratory R Package

Was this helpful?

  1. Analytics

Decision Tree

Builds a decision tree to predict Target Variable column value from Predictor Variable(s) column values.

Input Data

Input data should contain following columns.

  • Target Variable - Column that has values to be predicted by the decision tree. It can be of categorical (binary or multi-class) or nuneric value.

  • Predictor Variable(s) - Column(s) that has values on which the prediction by decision tree is based.

Properties

  • Decision Tree

    • Min Size for Node before Split - Split is performed only if the sample size for the node is at least this size.

    • Min Size for Terminal Node - Split is not performed if it would make size of any of the resulting nodes smaller than this size.

    • Min Improvement Rate by Split - Split is not performed if it does not improve the fit of the tree by this ratio.

    • Max Levels for Tree Depth - Max depth of the resulting tree. Root node is counted as level 0.

  • Binary Classification

    • Cut Point for TRUE/FALSE - Cut point of predicted probability to be TRUE to decide whether a sample is classified as TRUE or FALSE.

  • Data Preprocessing

    • Sample Data Size - Number of rows to sample before building decision tree.

    • Random Seed - Seed used to generate random numbers. Specify this value to always reproduce the same result.

    • Max # of Categories for Target Variable - If categorical Target Variable column has more categories than this number, less frequent categories are combined into 'Other' category.

    • Max # of Categories for Predictor Vars - If categorical predictor column has more categories than this number, less frequent categories are combined into 'Other' category.

  • Imbalanced Data Adjustment

    • Adjust Imbalanced Data - Adjust imbalance of data in Target Variable (e.g. FALSE being majority and TRUE being minority.) by SMOTE (Synthetic Minority Over-sampling Technique) altorithm.

    • Target % of Minority Data

    • Maximum % Increase for Minority Size

    • Neighbors to Sample for Populating Data

  • Evaluation

    • Test Mode - Enables/Disables Test Mode, where data is split into training data and test data for evaluation of the resulting Decision Tree model.

    • Ratio for Test Data - Ratio of test data to select from the entire data. Default is 0.3.

    • Data Splitting Method

      • Random - Test data is randomly sampled from the original data.

      • Reserve Order in Data - Data that shows up later in the original data is used as test data.

How to Use This Feature

  1. Click Analytics View tab.

  2. If necessary, click "+" button on the left of existing Analytics tabs, to create a new Analytics.

  3. Select "Decision Tree" for Type.

  4. Select Target Variable column that you want to predict with the decision tree.

  5. Select Predictor Variable(s) columns to be the basis of the prediction by the decison tree.

  6. Click Run button to run the analytics.

  7. Select view type by clicking view type link to see each type of generated visualization.

"Summary" View

"Summary" View displays metrics that describes the quality of the Decision Tree model.

"Prediction" View

"Prediction" View shows how the predicted value or probability by the model changes when only one of the predictor changes, on average on sampled data points.

"Importance" View

"Importance" View displays importances of variables for the prediction.

"Prediction Matrix" View

"Prediction Matrix" View displays a matrix where each column represents the instances in a predicted class while each row represents the instances in an actual class. It makes it easy to see how well the model is classifying the two classes. The darker the color, the higher the percentage value.

"Probability" View

For binary classification, "Probability" View shows distribution of predicted probability of being TRUE, for the observations that are actually TRUE and for the observations that are actually FALSE.

"Prediction Quality" View

When Target Variable is a number, "Prediction Quality" View shows a scatter plot with predicted values on X-axis, and actual values on Y-axis.

"ROC" View

For binary classification, "ROC" View displays Receiver Operating Characteristic Curve of the model. The area under this curve is the AUC, which indicates how well the model separates the TRUE class and the FALSE class.

"Data" View

Data View shows original input data with additional columns of predicted value and/or predicted probability.

Exploratory R Package

exp_rpart is the function we call for the Decision Tree Analytics View.

Name of the R function arguments for the parameters are as follows.

  • Max Size for Node before Split - minsplit

  • Min Size for Terminal Node - minbucket

  • Min Improvement Rate by Split - cp

  • Max Levels for Tree Depth - maxdepth

PreviousRandom Survival ForestNextRandom Forest

Last updated 3 years ago

Was this helpful?

Under the cover, we make use of rpart R package for the Decision Tree Analytics View. For details about how we use rpart R package, please refer to the .

github repository