Exploratory
  • Introduction
  • Product Features
    • Summary View
    • Table View
    • Row Filter
    • Column Filter
    • Dashboard
    • Dashboard (日本語)
    • Note
    • Note (日本語)
    • Steps (Right-hand side)
    • Branch
    • Parameter
    • Parameter (日本語)
    • Export
    • Share
      • Share Type
      • Chart / Analytics
      • Data
      • Report (Note / Dashboard)
      • Notification
      • Version History
      • Restore Older Version
      • CSV API
    • Share (日本語)
      • 共有のタイプ
      • チャート / アナリティクス
      • データ
      • レポート (ノート / ダッシュボード)
      • 通知
      • バージョンの履歴
      • 古いバージョンの復元
      • CSV API
    • Schedule
      • Manage Schedules
      • Notification
      • Scheduling History
    • Schedule (日本語)
      • スケジュールの設定
      • 通知
      • スケジュールの履歴
    • Team
      • Manage Teams
    • Team (日本語)
      • チームの設定
    • Project
      • Import
      • Export
      • Search
  • Data Import
    • File Data
      • CSV / Delimited File
      • Amazon S3
      • Google Drive
      • Google Cloud Storage
      • Excel
      • JSON
      • Log File
      • Microsoft Azure
      • Stats - SAS / SPSS / STATA
      • RData / RDS
      • Parquet File
      • EDF - Exploratory
    • Database Data
      • SQL Troubleshooting
      • Create Connection
      • Amazon Athena
      • Amazon Aurora
      • Amazon Redshift
      • Amazon Redshift (日本語)
      • Google BigQuery
      • HP Vertica
      • MariaDB / MySQL DB
      • MariaDB / MySQL DB (日本語)
      • Microsoft Access
      • MongoDB
      • ODBC
      • Oracle
      • PostgreSQL
      • PostgreSQL (日本語)
      • Presto
      • Snowflake
      • SQLServer (DSN)
      • SQLServer
      • Teradata
      • Treasure Data
    • Cloud Apps Data
      • Create Connection
      • FRED - Federal Reserve of Economic Data
      • Github Issues
      • Google Analytics
      • Google Analytics (日本語)
      • Google Spreadsheet
      • Google Cloud Storage
      • Salesforce
      • Twitter Search
      • Stripe
      • Weather Data
      • Stock Price Data
    • Write R Script as Data
      • Currency Exchange Rate
    • Write R Script as Data (日本語)
    • Web Page Scraping
    • Text Input Data
    • Data Source Extension
      • Quandl
      • Holiday
      • RSS Data
    • Create Custom Data Source
  • Data Wrangling
    • Command Line mode for faster and more flexible data interaction in Exploratory
    • Select / Remove Columns
    • Reorder Columns
    • Create New Calculation
    • Create New Calculation for Multiple Columns
    • Summarize (Aggregate)
    • Group
    • Filter
    • Rename
    • Arrange (Sort)
    • Top / Bottom N
    • Join
    • Merge
    • Gather
    • Spread
    • Pivot
    • Expand
    • Complete
    • Separate
    • Unite
    • Bind Rows
    • Bind Columns
    • Keep Only Unique Rows
    • Keep Only Duplicated Rows
    • Slice
    • Drop NA
    • Sample
    • Impute NA
    • Fill
    • Create Buckets
    • Assign New Values to Existing Values - Recode
    • Assign New Values by Setting Conditions - Case When
    • Work with Categories
    • Data Type Conversion
    • Row as header
    • Ungroup
    • Unnest
    • Separate List Items into Columns (Unnest Wider)
    • Separate List Items into Rows (Unnest Longer)
    • Separate Address (Japan)
    • Hoist
    • Remove Empty Rows
    • Remove Empty Columns
    • Clean Column Names
    • Window Calculation
    • Window Calculation (日本語)
    • Add Row
    • Text Wrangling
    • Regular Expression Cheat Sheet
    • Regular Expression Cheat Sheet (日本語)
  • Visualization
    • Types
      • Pivot
      • Summarize Table
      • Table
      • Bar
      • Line
      • Area
      • Pie/Ring
      • Radar
      • Histogram
      • Density Plot
      • Scatter (No Aggregation)
      • Scatter (With Aggregation)
      • Boxplot
      • Violin
      • Error Bar
      • Error Bar (Summarized Data)
      • Map - Standard
      • Map - Extension
      • Map - Long/Lat
      • Map - Heatmap
      • Heatmap
      • Contour
      • Number
      • Word Cloud
      • Word Cloud (日本語)
    • Features
      • Trend Line
      • Reference Line
      • Repeat By
      • Window Calculation
      • Date/Time Aggregation
      • Show Range
      • Highlight
      • Change Marker
      • Multiple Y-Axis Columns
      • Layout Configuration
      • Column Configuration
      • Column Configuration Dialog
      • Color and Group Setting
      • Color and Group Setting (日本語)
      • Color Setting
      • User Color Palette Setting
      • Pin
      • Save as PNG/SVG
      • Save as Exploratory Data File
      • Share/Schedule
      • URL Link
      • Category (Binning)
      • Highlight
      • Limit Values
      • 'Others' Group
      • Edit Display Name
      • Missing Value Handling
      • Rename Column Names
      • Axis Setting
      • Axis Formatting
      • Show Detail
      • Fit to Screen (Table)
      • Number of Unique Values Check
      • Number of Unique Values Check (日本語)
  • Analytics
    • Correlation
    • Distance
    • K-Means Clustering
    • Principal Component Analysis
    • Factor Analysis
    • Correspondence Analysis
    • Linear Regression Analysis
    • Logistic Regression Analysis
    • Generalized Linear Models
    • Survival Curve
    • Cox Regression
    • Random Survival Forest
    • Decision Tree
    • Random Forest
    • XGBoost
    • Time Series Forecasting (Prophet)
    • Time Series Forecasting (ARIMA)
    • Time Series Clustering
    • Anomaly Detection
    • Word Count
    • Text Clustering with Topic Model (LDA)
    • Market Basket Analysis
    • T Test
    • T Test (Aggregated Data)
    • ANOVA
    • Wilcoxon Test
    • Kruskal-Wallis Test
    • Chi-Square Test
    • A/B Test
    • Normality Test
    • Prediction
    • Dictionaries for Text Analysis
  • Statistics
    • Correlation
    • Distance
    • Cosine Similarity
    • SVD
    • Multi Dimensional Scaling
    • T-test
    • F-test
    • Chi-square test
    • A/B Test (Bayesian)
  • Machine Learning
    • Linear Regression
    • Logistic Regression
    • GLM
    • Multinomial Logistic Regression
    • K-means Clustering
    • Random Forest
    • XGBoost
    • Forecasting
    • Time Series Clustering
    • Anomaly Detection
    • Survival Curve
    • Survival Model (Cox Regression)
    • Market Basket
    • Causal Impact
    • Evaluate Prediction - Regression
    • Evaluate Prediction - Binary
    • Calculate ROC
    • Evaluate Prediction - Multiclass
    • Prediction
    • Prediction - Binary Classification
    • Prediction - Survival Model
    • Simulate Survival Curve
    • Extract Summary of Fit
    • Extract Parameter Estimates
    • Run ANOVA Test
    • Fix Imbalanced Data (SMOTE)
  • Text Analysis
    • Tokenize Text
    • Create N-gram Tokens
    • Calculate tf-idf
    • Count Text Pairs
  • Extend with R
    • R Package Install
    • Custom R Script
    • Custom Model Function
  • Setup
    • Disable McAfee virus scan
    • Change Repository Location
    • Change Repository Location (日本語)
    • Holidays Data for Forecast
    • Possible Reasons for Install Error
    • Upgrade Microsoft .NET Framework
  • Diagnostics
    • Log file for debugging
    • Log file for debugging (日本語)
    • Startup Log file for debugging
    • Startup Log file for debugging (日本語)
    • Check version of Exploratory Desktop
    • How to Recover the History Data
  • Keyboard shortcuts
Powered by GitBook
On this page
  • 1. Before you start
  • Create a project for Google BigQuery
  • Create a dataset on Google BigQuery
  • 2. Select Google BigQuery Data Menu
  • 3. Authentication with Google OAuth
  • 4. Write SQL Query
  • 4.1 Preview Data
  • 5. Standard SQL
  • 5.1 Composability using WITH clauses and SQL functions
  • 6. Page Size
  • 7. Using Parameters in SQL
  • 8. Import
  • 9. Switch Billing Project

Was this helpful?

  1. Data Import
  2. Database Data

Google BigQuery

PreviousAmazon Redshift (日本語)NextHP Vertica

Last updated 3 years ago

Was this helpful?

1. Before you start

To use Google BigQuery with Exploratory Desktop, you need to create a project on Google Cloud Platform and a dataset on Google BigQuery.

Create a project for Google BigQuery

  • Open

  • Click "Create Project" menu at the right hand side top

  • Select a Project name and click "Create" button

  • Make sure that you enable BigQuery API for you Project by clicking "Enable and manager APIs " menu under Use Google APIs section

Create a dataset on Google BigQuery

  • Click down arrow icon next to your project name and select "Create new dataset" menu.

  • Enter Dataset id and Click "OK" button

2. Select Google BigQuery Data Menu

  • Select 'Import Database Data' from Add Data Frames dropdown

  • Click 'Google BigQuery'

3. Authentication with Google OAuth

Select an account you want to use for your Google BigQuery and click 'Allow' button to allow Exploratory to extract your Google BigQuery data based on the parameters you are going to set up in the next step.

4. Write SQL Query

4.1 Preview Data

  • Type Data Frame Name

  • Select Google BigQuery Project from the dropdown menu

  • Enter query to SQL Query editor

  • Click Run button to preview data.

5. Standard SQL

You can now use Standard SQL by clicking the "Standard SQL Mode" checkbox on Google BigQuery Configuration Dialog.

On the Google BigQuery Configuration Dialog, you can set the Standard SQL Mode.

BigQuery standard SQL is compliant with the SQL 2011 standard and has extensions that support querying nested and repeated data.

Standard SQL has several advantages over legacy SQL, including:

  • Composability using WITH clauses and SQL functions

  • Subqueries in the SELECT list and WHERE clause

  • Correlated subqueries

  • ARRAY and STRUCT data types

  • COUNT(DISTINCT <expr>) is exact and scalable, providing the accuracy of EXACT_COUNT_DISTINCT without its limitations

  • Automatic predicate push-down through JOINs

  • Complex JOIN predicates, including arbitrary expressions

5.1 Composability using WITH clauses and SQL functions

Now you can use WITH clause which enables extraction or reuse of named subqueries. For example:

WITH SUBQ AS (
  SELECT score FROM UNNEST([50, 60, 40, 50]) AS score
)
SELECT score / (SELECT SUM(score) FROM SUBQ) AS weighted_score
FROM SUBQ;

6. Page Size

When importing data from Google BigQuery, if you specify a lot of columns in your SQL query, the query may return missing results. If this is the case, you might want to reduce the page size.

Also, when your query result contains many list columns, you also want to reduce page size so that you can import the query result.

Please note that decreasing the page size slows the importing data process.

You can override the Page Size at the Import Dialog too.

7. Using Parameters in SQL

First, click Parameter link on the SQL Data Import Dialog.

Second, define a parameter and click Save button.

Finally, you can use @{} to surround a variable name inside the query like below.

select *
from airline_2016_01
where carrier = @{carrier}

If you type @ then it suggests parameters like below.

8. Import

Click 'Import' button

If the data in the preview table look ok, then click 'Import' button to import the data into Exploratory.

9. Switch Billing Project

When you want to switch your Billing Project, you can click select a Billing Project on Google BigQuery Configuration dialog.

Open

Click the Edit button to open the Google BigQuery Configuration Dialog.

For Migration from legacy SQL, Please refer

Here's a for more detail.

Google BigQuery Web ui
Migrating to Standard SQL
blog post
Google Cloud Platform Console